$1\, \mu C$ વિદ્યુતભારોને $x-$ અક્ષ પર $x = 1, 2,4, 8, .... \infty$ મૂકવામાં આવે છે. તો ઉગમ બિંદુ પર રહેલ $1\, C$ વિદ્યુતભાર પર કેટલા .....$N$ બળ લાગે?
$9000$
$12000$
$24000$
$36000$
આકૃતીમાં દર્શાવ્યા મુજબ બે નાના, સમાન દળ $m$ અને સમાન વિદ્યુતભાર $q$ ધરાવતા બોલને સમાન લંબાઇ $L$ ધરાવતી અવાહક દોરી વડે લટકાવેલ છે ધારોકે ઘણો નાનો છે કે જેથી $tan\theta \approx sin\theta $ , તો સંતુલન સમયે $x$ = .....
ત્રણ દરેક $2 \,C$ જેટલા વિદ્યુતભારીત બોલને $2 \,m$ લંબાઈના સ્લિકના દોરાથી (આકૃતિમાં દર્શાવ્યા અનુસાર) સમાન બિંદુ $P$ આગળથી લટકાવવામાં આવ્યા છે. તેઓ $1 \,m$ બાજુનો સમબાજુ ત્રિકોણ બનાવે છે. વિદ્યુતભારીત બોલ પર લાગતુ કુલ બળ અને કોઇપણ બે વિદ્યુતભારો વચ્યે પ્રવર્તતા બળોનો ગુણોત્તર .......... થશે.
$2\mathrm{d}$ અંતરે આવેલા બિંદુએ દરેક પર $-\mathrm{q}$ વિધુતભારોને મૂકેલાં છે. $\mathrm{m}$ દળ અને $\mathrm{q}$ વિધુતભારને બંને $-\mathrm{q}$ વિધુતક્ષેત્રોને જોડતી રેખાના મધ્યબિંદુએથી લંબરૂપે $x (x \,<\,<\, d)$ અંતરે આકૃતિમાં બતાવ્યા પ્રમાણે મૂકેલો છે. બતાવો કે $\mathrm{q}$ વિધુતભાર એ $-\mathrm{T}$ આવર્તકાળ સાથેની સ.આ.ગ. કરશે.
જ્યાં $T = {\left[ {\frac{{8{\pi ^2}{ \in _0}m{d^2}}}{{{q^2}}}} \right]^{1/2}}$
વિદ્યુતભાર $q$ ને સમાન વિદ્યુતભાર ધરાવતા બે $Q$ વિદ્યુતભારને જોડતી રેખાની મધ્યમાં મૂકવામાં આવે છે. જો ત્રણ વિદ્યુતભારનું તંત્ર સમતોલનમાં રહે જો $q=$
$-q$ વિદ્યુતભાર અને $m$ દળ ધરાવતો એક કણ અનંત લંબાઈ અને $+\lambda$ જેટલી રેખીય વિદ્યુતભાર ધનતા ધરાવતા રેખીય વિદ્યુતભારને ફરતે $r$ ત્રિજ્યા ધરાવતા વર્તુળ ઉપર ગતિ કરે છે. આવર્તકાળ___________વડે આપી શકાય.
( $k$ ને કુલંબના અચળાંક તરીકે લો.)