1. Electric Charges and Fields
hard

An infinite number of charges, each of charge $1 \,\mu C$ are placed on the $x$-axis with co-ordinates $x = 1, 2,4, 8, ....\infty$. If a charge of $1\, C$ is kept at the origin, then what is the net force acting on $1\, C$ charge....$N$

A

$9000$

B

$12000$

C

$24000$

D

$36000$

Solution

(b) The schematic diagram of distribution of charges on $x-$axis is shown in figure below :
Total force acting on $1\, C$ charge is given by
$F = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{1 \times 1 \times {{10}^{ – 6}}}}{{{{(1)}^2}}} + \frac{{1 \times 1 \times {{10}^{ – 6}}}}{{{{(2)}^2}}}} \right.$
$\left. { + \frac{{1 \times 1 \times {{10}^{ – 6}}}}{{{{(4)}^2}}} + \frac{{1 \times 1 \times {{10}^{ – 6}}}}{{{{(8)}^2}}} + ….\infty } \right]$
$ = \frac{{{{10}^{ – 6}}}}{{4\pi {\varepsilon _0}}}\left( {\frac{1}{1} + \frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + …\infty } \right) = \,9 \times {10^9} \times {10^{ – 6}}\left( {\frac{1}{{1 – \frac{1}{4}}}} \right)$
$ = 9 \times {10^9} \times {10^{ – 6}} \times \frac{4}{3} = 9 \times {10^3} \times \frac{4}{3}$$= 12000\,N$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.