3-1.Vectors
hard

વિધાન $A$ : જો $A, B, C, D$ એ અર્ધ વર્તુળ કેન્દ્ર $O$ પર ચાર બિંદુઓ એવા છે કે જેથી $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$ હોય, તો $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$

કારણ $R$ : સદીશ સરવાળાનો બહુકોણનો નિયમ $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$ આપે છે. 

ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી વધારે યોગ્ય જવાબ પસંદ કરો. 

A

બંને $A$ અને $R$ સાચાં છે અને $R$ એ $A$ ની સાચી સમજણ આપે છે.

B

$A$ સાચું નથી પણ $R$ સાયું છે.

C

બંને $A$ અને $R$ સાચાં છે પણ $R$ એ $A$ ની સાચી સમજણ આપતું નથી.

D

$A$ સાયું છે પણ $R$ સાયું નથી.

(JEE MAIN-2021)

Solution

$|\overrightarrow{A B}|=|\overrightarrow{B C}|=|\overrightarrow{C D}|$

Here, $O$ is the centre of semi- circle

$\therefore|\overrightarrow{O A}|=|\overrightarrow{O B}|=|\overrightarrow{O C}|=|\overrightarrow{O D}|$

Using vector law of addition, we can write,

$\overrightarrow{ AB }=\overrightarrow{ AO }+\overrightarrow{ OB }$

$\overrightarrow{ AC }=\overrightarrow{ AO }+\overrightarrow{ OC }$

$\overrightarrow{ AD }=\overrightarrow{ AO }+\overrightarrow{ OD }=2 \overrightarrow{ AO }$

After adding all, we get,

$\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}=4 \overrightarrow{A O}+\overrightarrow{O B}+\overrightarrow{O C}$

Reason $R$ is the direct result of Polygon law of vector addition

Therefore, Polygon law is applicable in both but the equation given in the reason is not useful in explaining the assertion.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.