अभिकथन $A$ : यदि $A , B , C , D$ अर्ध वत्त (केन्द्र $'O'$) पर स्थित चार बिन्दु इस प्राकार है कि
$|\overrightarrow{ AB }|=|\overrightarrow{ BC }|=|\overrightarrow{ CD }|$ तो
$\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }=4 \overrightarrow{ AO }+\overrightarrow{ OB }+\overrightarrow{ OC }$
कारण $R$ : सदिशों के बहुभुज नियम के अनुसार
उपरोक्त कथनानुसार, सबसे उपयुक्त विकल्प को दिए गए विकल्पों में से चुनिए।
दोनों $A$ और $R$ सही है और $R , A$ की सही व्याख्या है।
$A$ सही नही है परन्तु $R$ सही है।
दोनों $A$ और $R$ सही है $R , A$ की सही व्याख्या नहीं है।
$A$ सही है परन्तु $R$ सही नहीं है।
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
परिमाण $2 F$ तथा $3 F$ वाले दो बल $P$ तथा $Q$ एक-दूसरे के साथ $\theta$ कोण पर लगाये जाते हैं। यदि बल $Q$ को दुगुना कर दिया जाए तो उनका परिणामी बल भी दुगुना हो जाता है तो कोण $\theta$ का मान ...... $^o$ है।
समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा
$12 \,N$ तथा $8 \,N$ परिमाण के दो बल एक वस्तु पर कार्यरत हैं। वस्तु पर लगने वाले परिणामी बल का अधिकतम मान .......... $N$ है