- Home
- Standard 12
- Physics
પૃથ્વીને ચુંબકીય કાઇપોલના મોડેલ $( \mathrm{Model} )$ તરીકે લઈએ, તો પૃથ્વીનું ચુંબકીય ક્ષેત્ર $\mathrm{B}$ નીચે પ્રમાણે અપાય છે.
${{\rm{B}}_{\rm{v}}} = $ = ચુંબકીય ક્ષેત્રનો શિરોલંબ ઘટક $ = \frac{{{\mu _0}}}{{4\pi }}\frac{{2m\,\cos \theta }}{{{r^3}}}$
${{\rm{B}}_H}$ $=$ ચુંબકીય ક્ષેત્રનો સમક્ષિતિજ ઘટક ${{\rm{B}}_H} = \frac{{{\mu _0}}}{{4\pi }}\frac{{m\,\sin \theta }}{{{r^3}}}$
$\theta = {90^o}$ - વિષુવવૃત્ત પરથી માપેલ અક્ષાંશ છે, તો : જે બિંદુએ ${{\rm{\vec B}}}$ લઘુતમ હોય.
Solution
આપેલું છે કે, $B _{ V }=\frac{\mu_{0}}{4 \pi} \frac{2 m \cos \theta}{r^{3}}\ldots (1)$
$B _{ H }=\frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{3}}\ldots (2)$
સમીકરણ $(1)$ અને $(2)$ નો વર્ગ કરી સરવાળો કરતાં,
$B _{ V }^{2}+ B _{ H }^{2}=\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[4 \cos ^{2} \theta+\sin ^{2} \theta\right]$
$\therefore B ^{2}=\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[4 \cos ^{2} \theta+1-\cos ^{2} \theta\right]$
$\therefore B =\sqrt{ B _{ V }^{2}+ B _{ H }^{2}}$
$=\sqrt{\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[3 \cos ^{2} \theta+1\right]}$
$=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}\left[3 \cos ^{2} \theta+1\right]^{1 / 2}\dots(3)$
સમીકરણ $(3)$ માં જો $\cos \theta=0$ લઈએ તો $B$ નું મૂલ્ય લઘુતમ મળે. આમ, $\theta=\frac{\pi}{2}$
આમ,ચુંબકીય વિષુવવૃત પર આ બિંદુ મળે છે.