At an election, a voter may vote for any number of candidates, not greater than the number to be elected. There are $10$ candidates and $4$ are of be selected, if a voter votes for at least one candidate, then the number of ways in which he can vote is
$5040$
$6210$
$385$
$1110$
Determine $n$ if
$^{2 n} C_{3}:^{n} C_{3}=11: 1$
In an examination of Mathematics paper, there are $20$ questions of equal marks and the question paper is divided into three sections : $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$. A student is required to attempt total $15$ questions taking at least $4$ questions from each section. If section $A$ has $8$questions, section $\mathrm{B}$ has $6$ questions and section $\mathrm{C}$ has $6$ questions, then the total number of ways a student can select $15$ questions is
There are three bags $B_1$,$B_2$ and $B_3$ containing $2$ Red and $3$ White, $5$ Red and $5$ White, $3$ Red and $2$ White balls respectively. A ball is drawn from bag $B_1$ and placed in bag $B_2$, then a ball is drawn from bag $B_2$ and placed in bag $B_3$, then a ball is drawn from bag $B_3$. The number of ways in which this process can be completed, if same colour balls are used in first and second transfers (Assume all balls to be different) is
In a club election the number of contestants is one more than the number of maximum candidates for which a voter can vote. If the total number of ways in which a voter can vote be $62,$ then the number of candidates is :-
A student is allowed to select at most $n$ books from a collection of $(2n + 1)$ books. If the total number of ways in which he can select one book is $63$, then the value of $n$ is