समय $t =0$ पर, कोई कण $7 \hat{ z }\,cm$ की ऊँचाई से एक तल में स्थिर $z$ के साथ चलना प्रारम्भ करता है। किसी क्षण पर, $x$ एवं $y$ दिशाओं के अनुदिश इसकी स्थिति क्रमशः $3 t$ एवं $5 t ^3$ द्वारा परिभाषित है। समय $t =1 s$ पर, कण के त्वरण का मान होगा
$-30\,y$
$30\,y$
$3 x+15 y$
$3 x+15 y+7 \hat{z}$
जहाज $A$ वेग $\overrightarrow{ v }=30 \hat{ i }+50 \hat{ j } \,km / hr$ से उत्तर-पूर्व दिशा में जलयात्रा कर रहा है जहाँ $\hat{i}$ पूर्व तथा $\hat{j}$ उत्तर की ओर इंगित है। जहाज $B$, जहाज $A$ से $80\, km$ पूर्व की ओर $150 km$ उत्तर की ओर, दूरी पर स्थित है और पश्चिम की ओर $10 \,km / hr$ की चाल से जलयात्रा कर रहा है। $A$ से $B$ की दूरी न्यूनतम $......\,hrs$ होगी ।
एक वस्तु का वेग समय $t = 0$ पर उत्तरपूर्व दिशा में $10\sqrt 2 $ मी/सै है तथा यह $2$ मी/सै$^{2}$ के त्वरण से गति कर रही है, त्वरण की दिशा दक्षिण की ओर है। $5$ सैकण्ड पश्चात् वस्तु के वेग का परिमाण तथा दिशा होगी
$x-y$ समतल में कण की गति निम्न समीकरणो $x =4 \sin \left(\frac{\pi}{2}-\omega t \right) m$ तथा $y =4 \sin (\omega t ) m$. द्वारा व्यक्त की जाती है। कण का पथ होगा-
एक कण वेग $\overrightarrow{ v }=k( y\hat i +{ x \hat j})$ से गतिशील है, जहाँ $K$ एक स्थिरांक है। इसके पथ का व्यापक समीकरण है।
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए तथा कारण एवं उदाहरण सहित बताइए कि क्या यह सत्य है या असत्य :
अदिश वह राशि है जो
$(a)$ किसी प्रक्रिया में संरक्षित रहती है,
$(b)$ कभी ऋणात्मक नहीं होती,
$(c)$ विमाहीन होती है,
$(d)$ किसी स्थान पर एक बिंदु से दूसरे बिंदु के बीच नहीं बदलती,
$(e)$ उन सभी दर्शकों के लिए एक ही मान रखती है चाहे अक्षों से उनके अभिविन्यास भिन्न-भिन्न क्यों न हों ।