$1$ અને $31$ વચ્ચે જ સંખ્યાઓ એવી રીતે મૂકવામાં આવે છે કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય અને $7$ મી અને $(m-1)$ મી સંખ્યાનો ગુણોત્તર $5 : 9$ હોય, તો $m$ નું મૂલ્ય શોધો.
Let $A_{1}, A_{2}, \ldots \ldots A_{m}$ be m numbers such that $1, A_{1}, A_{2}, \ldots \ldots A_{m}, 31$ is an $A.P.$
Here, $a=1, b=31, n=m+2$
$\therefore 31=1+(m+2-1)(d)$
$\Rightarrow 30=(m+1) d$
$\Rightarrow d=\frac{30}{m+1}$ ...........$(1)$
$A_{1}=a+d$
$A_{2}=a+2 d$
$A_{3}=a+3 d$
$\therefore A_{7}=a+7 d$
$A_{m-1}=a+(m-1) d$
According to the given condition,
$\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
$\Rightarrow \frac{1+7\left(\frac{30}{(m+1)}\right)}{1+(m-1)\left(\frac{30}{m+1}\right)}=\frac{5}{9}$ [ From $(1)$ ]
$\Rightarrow \frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}$
$\Rightarrow \frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
$\Rightarrow \frac{m+211}{31 m-29}=\frac{5}{9}$
$\Rightarrow 9 m+1899=155 m-145$
$\Rightarrow 155 m-9 m=1899+145$
$\Rightarrow 146 m=2044$
$\Rightarrow m=14$
Thus, the value of $m$ is $14$
જો $a^{1/x} = b^{1/y} = c^{1/z}$ અને $a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, y$ અને $z$ એ.....
$1.3.5, 3.5.7, 5.7.9, ...... $ શ્રેણીના પ્રથમ $n$ પદોનો સમાંતર મધ્યક કેટલો થાય ?
$1$ થી $2001$ સુધીના અયુગ્મ પૂર્ણાકોનો સરવાળો શોધો.
સમાંતર શ્રેણીના $p$ માં પદના $p$ ગણા અને $q$ મા પદના $q$ ગણા એ બંને સમાન હોય, તો આ શ્રેણીનું $(p + q)$ મું પદ........ છે.
સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.