ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
$P ( A )=0.5$, $P ( B )=0.7$, $P (A \cap B)=0.6$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
However, $P (A \cap B)> P ( A )$
Hence, $P ( A )$ and $P ( B )$ are not consistently defined.
જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.
ઘટનાઓ $E$ અને $F$ માટે $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ અને $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ છે. $E$ અને $F$ નિરપેક્ષ છે ?
એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના $0.5$ છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના $0.1$ છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના $0.75$ હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?
$P(A)=\frac{3}{5}$ અને $P(B)=\frac{1}{5}$ આપેલ છે. જો $A$ અને $B$ પરસ્પર નિવારક ઘટનાઓ હોય તો $P(A$ અથવા $B$) શોધો.
એક થેલામાં $5$ કથ્થાઈ અને $4$ સફેદ મોજા છે. એક માણસ $2$ મોજા બહાર કાઢે તો તે સમાન રંગના હોવાની સંભાવના કેટલી થાય ?