બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $

  • [IIT 1988]
  • A

    $P(A) + P\,(B) - 1$ કરતાં ઓછી નથી

  • B

    $P(A) + P(B)$ કરતાં મેાટી નથી

  • C

    $P(A) + P(B) - P(A \cup B)$ બરાબર છે.

  • D

    ઉપરોક્ત બધાજ

Similar Questions

ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .

  • [JEE MAIN 2014]

એક પાસાને ફેંકવામાં આવે છે. જો ઘટના $E$ એ પાસા પર મળતી સંખ્યા $3$ નો ગુણિત છે' અને ઘટના -$F$ ‘પાસા પર મળતી સંખ્યા યુગ્મ છે', તો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો.

એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો. 

ધારો કે $X$ અને $Y$ ઘટનાઓ એવી હોય કે જેથી  $P(X  \cup  Y) = P(X \cap Y).$

  વિધાન $- 1 : $$P(X \cap Y ) = P(X' \cap Y') = 0$

  વિધાન $- 2 :$ $P(X) + P(Y) = 2P(X  \cap Y).$

ત્રણ સિક્કાઓને એકસાથે ઉછાળવામાં આવે છે. ધારો કે ઘટના $E$ 'ત્રણ છાપ અથવા ત્રણ કાંટા', ઘટના $F$ 'ઓછામાં ઓછી બે છાપ' અને ઘટના $G$ 'વધુમાં વધુ બે છાપ.' મળે તેમ દર્શાવે છે. જોડ $(E, F), (E, G)$ અને $(F, G)$ પૈકી કઈ ઘટનાઓની જોડ નિરપેક્ષ ઘટનાઓની જોડ છે ? કઈ ઘટનાઓની જોડ અવલંબી છે ?