Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
$P ( A )=0.5$, $P ( B )=0.7$, $P (A \cap B)=0.6$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
However, $P (A \cap B)> P ( A )$
Hence, $P ( A )$ and $P ( B )$ are not consistently defined.
The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are
Two events $A$ and $B$ will be independent, if
Let $A$ and $B$ be events for which $P(A) = x$, $P(B) = y,$$P(A \cap B) = z,$ then $P(\bar A \cap B)$ equals
If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is
If $P(A) = 0.25,\,\,P(B) = 0.50$ and $P(A \cap B) = 0.14,$ then $P(A \cap \bar B)$ is equal to