ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?
It is given that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12} \text { and } \mathrm{P}(\text { not } \mathrm{A} \text { or not } \mathrm{B})=\frac{1}{4}$.
$\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$
$\Rightarrow P\left((A \cap B)^{\prime}\right)=\frac{1}{4} \quad\left[A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}\right]$
$\Rightarrow 1-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{4}$ ........... $(1)$
However, $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{7}{12}=\frac{7}{24} $ .......... $(2)$
Here, $\frac{3}{4} \neq \frac{7}{24}$
$\therefore $ $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
Therefore, $A$ and $B$ are not independent events.
જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?
જો $A$ અને $B$ એવી ઘટનાઓ છે કે જેથી $P(A\, \cup \,\,B)\,\, = \,\,\frac{3}{4},\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{4}\,,\,P(\overline A )\,\, = \,\,\frac{2}{3},\,$ હોય , તો $P(\overline A \,\, \cap \,\,B)\,$ બરાબર શું થાય?
ત્રણ ઘટનાઓ $A , B$ અને $C$ ની સંભાવના અનુક્રમે $P ( A )=0.6, P ( B )=0.4$ અને $P ( C )=0.5$ આપેલ છે જો $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ અને $P(A \cup B \cup C)=\alpha$ જ્યાં $0.85 \leq \alpha \leq 0.95,$ હોય તો $\beta$ ની કિમત ........ અંતરાલમાં રહે છે
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $