जाँच कीजिए कि क्या समुच्चय $\{1,2,3,4,5,6\}$ में $R =\{(a, b): b=a+1\}$ द्वारा परिभाषित संबंध $R$ स्वतुल्य, सममित या संक्रामक है।
Let $A =\{1,2,3,4,5,6\}$.
A relation $R$ is defined on set $A$ as: $R=\{(a, b): b=a+1\}$
$\therefore R =\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$
we can find $(a, a) \notin R,$ where $a \in A$
For instance,
$(1,1),\,(2,2),\,(3,3),\,(4,4),\,(0,5),\,(0,6) \notin R$
$\therefore R$ is not reflexive.
It can be observed that $(1,2) \in R ,$ but $(2,1)\notin R$
$\therefore R$ is not symmetric.
Now, $(1,2),\,(2,3) \in R$
But, $(1,3)\notin R$
$\therefore R$ is not transitive
Hence, $R$ is neither reflexive, nor symmetric, nor transitive.
ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
माना $\mathrm{P}(\mathrm{S}), \mathrm{S}=\{1,2,3, \ldots, 10\}$ के घात समुच्चय को दर्शाता है। $P(S)$ पर संबंध $R_1$ तथा $R_2$, इस तरह परिभाषित हैं कि सभी $A, B \in P(S)$ के लिए $A R_1 B$ यदि $\left(A \cap B^c\right) \cup\left(B \cap A^c\right)=\varnothing$ है, तथा $A R_2 B$ यदि $\mathrm{A} \cup \mathrm{B}^{\mathrm{c}}=\mathrm{B} \cup \mathrm{A}^{\mathrm{c}}, \forall$ है। तो
माना $ R$ समुच्चय $A$ पर संबंध इस प्रकार है कि $R = {R^{ - 1}}$ तब $R $ है
$\alpha \in N$ के लिए, $N$ पर एक संबंध $R$, $R =\{( x , y ): 3 x +\alpha y , 7$ का एक गुणज है $\}$ द्वारा दिया गया है। संबंध $R$ एक तुल्यता संबंध है यदि और केवल यदि :
माना $\mathbb{N}$ पर एक संबंध $\mathrm{R}, \mathrm{a} \mathrm{k}$ यदि $2 \mathrm{a}+3 \mathrm{~b}$, $\mathrm{a}, \mathrm{b} \in \mathbb{N}, 5$ का एक गुणज है द्वारा परिभाषित है, तो $\mathrm{R}$