दो वत्तों जिनके समीकरण
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-22 x -10 y +137=0$ हैं, के लिए सही कथन चुनिए
एक बिंदु दोनों वत्तों का केन्द्र है
वत्त किसी भी बिंदु पर नहीं मिलते
वत्त केवल एक बिंदु पर मिलते है
वत्त दो बिंदुओं पर मिलते है
वृत्त ${x^2} + {y^2} = 9$ एवं ${x^2} + {y^2} - 12y + 27 = 0$ एक दूसरे को स्पर्श करते हैं। इनकी उभयनिष्ठ स्पषी का समीकरण है
माना रेखा $y=x+1$ में, वृत्त $c_1: x^2+y^2-2 x-6 y+$ $\alpha=0$ का दर्पण प्रतिबंब $c_2: 5 x^2+5 y^2+10 gx +$ $10 fy +38=0$ है। यदि वृत्त $c _2$ की त्रिज्या $r$ है, तो $\alpha+6 r^2$ बराबर है $...........।$
वृत्तों ${x^2} + {y^2} + 4x + 6y = 19$, ${x^2} + {y^2} = 9$ व ${x^2} + {y^2} - 2x - 2y = 5$ का मूलकेन्द्र है
यदि वृत्त $x^2+y^2+6 x+8 y+16=0$ तथा $x ^2+ y ^2+2(3-\sqrt{3}) x + x +2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k > 0$ बिंदु $P (\alpha, \beta)$ पर अंत: स्पर्श करते हैं, तो $(\alpha+\sqrt{3})^2+(\beta+\sqrt{6})^2$ बराबर है $..............$
वृत्त ${x^2} + {y^2} + 4x + 6y + 3 = 0$ व $2({x^2} + {y^2}) + 6x + 4y + C = 0$ लम्बवत् काटेंगे यदि $C =$