7.Binomial Theorem
hard

${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है

A

$^n{C_r}({3^r} - {2^n})$

B

$^n{C_r}({3^{n - r}} - {2^{n - r}})$

C

$^n{C_r}({3^r} + {2^{n - r}})$

D

इनमें से कोई नहीं

Solution

${(x + 3)^{n – 1}} + {(x + 3)^{n – 2}}(x + 2) + $

${(x + 3)^{n – 3}}{(x + 2)^2} + …. + {(x + 2)^{n – 1}}$

$ = \frac{{{{(x + 3)}^n} – {{(x + 2)}^n}}}{{(x + 3) – (x + 2)}} = {(x + 3)^n} – {(x + 2)^n}$

इसलिए दिये गए व्यंजक में ${x^r}$ का गुणांक

= $[{(x + 3)^n} – {(x + 2)^n}]$

$ = {\,^n}{C_r}{3^{n – r}} – {\,^n}{C_r}{2^{n – r}} = {\,^n}{C_r}({3^{n – r}} – {2^{n – r}})$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.