Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is

  • A

    $\left[ {\sec 2\,,\,\sec \,1} \right]$

  • B

    $\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$

  • C

    $\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$

  • D

    $\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$

Similar Questions

Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :

  • [JEE MAIN 2024]

The sum, of the squares of all the roots of the equation $x^2+|2 x-3|-4=0$, is :

  • [JEE MAIN 2025]

Number of natural solutions of the equation $xyz = 2^5 \times 3^2 \times  5^2$ is equal to

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]

Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then