અસમતા  $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ નો ઉકેલગણ મેળવો 

  • A

    $\left[ {\sec 2\,,\,\sec \,1} \right]$

  • B

    $\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$

  • C

    $\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$

  • D

    $\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$

Similar Questions

જો $\alpha, \beta$ એ સમીકરણ $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ ના બીજ છે અને દરેક ધન પૃણાંક $n$ માટે  $P_{n}=\alpha^{n}-\beta^{n}$ હોય તો $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ અને $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, હોય તો $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ .......... માટે શકય છે 

સમીકરણ  ${x^3}(x + 1) = 2(x + a)(x + 2a)$ ને ચાર ઉકેલો મળે તે માટે $a$ નો ગણ મેળવો 

ધારોકે $\lambda \in R$ અને ધારોકે સમીકરણ $E$ એ $|x|^2-2|x|+|\lambda-3|=0$ છે. તો ગણ $S =\{x+\lambda: x$ એ $E$ નો પૂર્ણાંક ઉકેલ છે; નો મહતમ ધટક $.............$ છે.

  • [JEE MAIN 2023]

જો $x$ એ વાસ્તવિક હોય તો વિધેેય $\frac{{(x - a)(x - b)}}{{(x - c)}}$ એ બધીજ વાસ્તવિક કિંમતો ધારણ કરી શકે છે જે  . . . શરત આપવમાં આવે .

  • [IIT 1984]