અસમતા $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ નો ઉકેલગણ મેળવો
$\left[ {\sec 2\,,\,\sec \,1} \right]$
$\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$
સમીકરણ $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ નું લઘુત્તમ મૂલ્ય કેટલું થાય ?
જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
જો $x$ અને $y$ વાસ્તવિક હોય, તો નીચેનામાંથી કયું સાચું હોય ?
ધારોકે $\alpha, \beta$ એ સમીકરણ $x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$ નાં ભિન્ન બીજ છે અને $a_n=\alpha^n+\beta^n$. તો $\frac{a_{2023}+a_{2025}}{a_{2024}}$ નું ન્યૂનતમ મૂલ્ય .............છે.