- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
Consider a family of circles which are passing through the point $(- 1, 1)$ and are tangent to $x-$ axis. If $(h, k)$ are the coordinate of the centre of the circles, then the set of values of $k$ is given by the interval
A
$k \le \frac{1}{2}$
B
$k \ge \frac{1}{2}$
C
$ - \frac{1}{2} \le k \le \frac{1}{2}$
D
$0 < k < \frac{1}{2}$
(AIEEE-2007)
Solution
Equation of circle $(x-h)^{2}+(y-k)^{2}=k^{2}$
It is passing through $(-1,1)$ then $(-1-h)^{2}+(1-k)^{2}=k^{2}$
$\Rightarrow h^{2}+2 h-2 k+2=0$
$D \geq 0$
$2 k-1 \geq 0 \Rightarrow k \geq 1 / 2$
Standard 11
Mathematics