અતિવલય $H : x ^{2}-2 y ^{2}=4$ આપેલ છે. જો બિંદુ $P (4, \sqrt{6})$ આગળનો સ્પર્શક $x$ -અક્ષને બિંદુ $Q$ અને નાભીલંભને બિંદુ $R \left( x _{1}, y _{1}\right), x _{1}>0 $ આગળ છેદે છે. જો $F$ એ $H$ ની બિંદુ $P$ થી નજીકની નાભી હોય તો $\Delta QFR$ નું ક્ષેત્રફળ મેળવો.
$4 \sqrt{6}$
$\sqrt{6}-1$
$\frac{7}{\sqrt{6}}-2$
$4 \sqrt{6}-1$
એક અતિવલયની મુખ્ય અક્ષની લંબાઇ $\sqrt{2}$ છે તથા અતિવલય અને ઉપવલય $3 x^{2}+4 y^{2}=12$ બંનેની નાભી સરખી હોય તો નીચેનામાંથી ક્યાં બિંદુમાંથી અતિવલય પસાર ન થાય
ધારોકે $A$ એ $x$-અક્ષ પરનું બિંદુ છે. $A$ પરથી વક્રી $x^2+y^2=0$ અને $y^2=16 x$ પર સામાન્ય સ્પર્શકો દોરવામાં આવે છે. જો આમાનો એક સ્પર્શક બને વક્રોને $Q$ અને $R$ માં સ્પર્શે, તો $(Q R)^2=.........$
નીચેનામાંથી કયા બિંદુએ અતિવલય $x^2 - y^2 = 3$ નો સ્પર્શક, રેખા $2x + y + 8 = 0$ ને સમાંતર હોય ?
રેખાઓ $x - y = 0, x + y = 0$ અને $x^{2} - y^{2}= a^{2}$ અતિવલય ના કોઇ સ્પર્શક વડે બનતા ત્રિકોણનું ક્ષેત્રફળ કેટલું થાય છે ?
ધારો કે $\mathrm{S}$ એ અતિવલય $\frac{x^2}{3}-\frac{y^2}{5}=1$ ની ધન $x$-અક્ષ પર આવેલ નાભિ છે. ધારો કે $\mathrm{C}$ એ કેન્દ્ર $\mathrm{A}(\sqrt{6}, \sqrt{5})$ અને બિંદુ $S$ માંથી પસાર થતું વર્તુળ છે.જો $\mathrm{O}$ ઊગમબિંદૂ હોય અને $SAB$ એ $C$ નો વ્યાસ હોય, તો ત્રિકોણ $OSB$ ના ક્ષેત્રફળનો વર્ગ ............. છે.