Consider a sphere of radius $\mathrm{R}$ which carries a uniform charge density $\rho .$ If a sphere of radius $\frac{\mathrm{R}}{2}$ is carved out of it, as shown, the ratio $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ of magnitude of electric field $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ and $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ respectively, at points $\mathrm{A}$ and $\mathrm{B}$ due to the remaining portion is
$\frac{18}{54}$
$\frac{21}{34}$
$\frac{17}{54}$
$\frac{18}{34}$
Explain by graph how the electric field by thin spherical shell depends on the distance of point from centre.
Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_{ I }, E_{ II }$ and $E_{III}$ are
A spherical conductor of radius $12 \;cm$ has a charge of $1.6 \times 10^{-7} \;C$ distributed uniformly on its surface. What is the electric field
$(a)$ inside the sphere
$(b)$ just outside the sphere
$(c)$ at a point $18\; cm$ from the centre of the sphere?
A non-conducting solid sphere of radius $R$ is uniformly charged. The magnitude of the electric field due to the sphere at a distance $r$ from its centre
Two infinite sheets of uniform charge density $+\sigma$ and $-\sigma $ are parallel to each other as shown in the figure. Electric field at the