1. Electric Charges and Fields
hard

$\mathrm{R}$ ત્રિજ્યા ધરાવતા ગોળા પર વિજભારઘનતા $\rho$ છે.જો તેમાથી $\frac{\mathrm{R}}{2}$ ત્રિજ્યા ધરાવતો ભાગ કાપી નાખવામાં આવે તો $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ નો ગુણોત્તર કેટલો થાય? જ્યાં $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ અને $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ બિંદુ $\mathrm{A}$ અને બિંદુ $\mathrm{B}$ પાસે વિદ્યુતક્ષેત્ર છે.

A

$\frac{18}{54}$

B

$\frac{21}{34}$

C

$\frac{17}{54}$

D

$\frac{18}{34}$

(JEE MAIN-2020)

Solution

Fill the empty space with $+\rho$ and $-\rho$ charge density.

$\left|\mathrm{E}_{\mathrm{A}}\right|=0+\frac{\operatorname{k\rho} \cdot \frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)^{3}}{\left(\frac{\mathrm{R}}{2}\right)^{2}}=\operatorname{k\rho} \frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)$

$\left|\mathrm{E}_{\mathrm{B}}\right|=\frac{\mathrm{k} \rho \cdot \frac{4}{3} \pi \mathrm{R}^{3}}{\mathrm{R}^{2}}-\frac{\mathrm{k} \rho \cdot \frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)^{3}}{\left(\frac{3 \mathrm{R}}{2}\right)^{2}}$

$=\operatorname{k\rho} \frac{4}{3} \pi \mathrm{R}-\mathrm{k} \rho \frac{4}{3} \pi \frac{\mathrm{R}}{18}=\mathrm{k} \rho \cdot \frac{4}{3} \pi\left(\frac{17 \mathrm{R}}{18}\right)$

$\frac{E_{A}}{E_{B}}=\frac{9}{17}=\frac{18}{34}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.