एक अनंत गुणोत्तर श्रेणी, जिसका प्रथम पद $a$ तथा सार्वानुपात $r$ है, का योग $4$ तथा द्वितीय पद $3/4$ है, तब
$a = \frac{7}{4},\,r = \frac{3}{7}$
$a = \frac{3}{2},\,r = \frac{1}{2}$
$a = 2,\,r = \frac{3}{8}$
$a = 3,\,r = \frac{1}{4}$
$1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ तब $\alpha $ $(0 < \alpha < \pi )$ का मान होगा
दो संख्याओं का योगफल उनके गुणोत्तर माध्य का $6$ गुना है तो दिखाइए कि संख्याएँ $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ के अनुपात में हैं।
किसी गुणोत्तर श्रेणी का $6$ वाँ पद $32$ तथा $8$ वाँ पद $128$ है, तो श्रेणी का सार्वानुपात होगा
यदि $a,\;b,\;c$ गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $r$ वें पद हैं, तब ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ का मान है
किसी गुणोत्तर श्रेणी के पद धनात्मक हैं। यदि प्रत्येक पद उसके बाद आने वाले दो पदों के योग के बराबर है, तो सार्वनिष्पत्ति होगी