यदि अनन्त पदों वाली किसी गुणोत्तर श्रेणी का योगफल $9$ तथा प्रथम दो पदों का योगफल $5$ हो, तो सार्वनिष्पति होगी
$1/3$
$3/2$
$3/4$
$2/3$
यदि $a,\,b,\,c$ समान्तर श्रेणी में तथा ${a^2},\,{b^2},{c^2}$ हरात्मक श्रेणी में हों, तो
यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब
श्रेणी $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$ का अनन्त पदों तक योग है
यदि किसी गुणोत्तर श्रेणी का तीसरा पद $4$ हो, तो इसके प्रथम $5$ पदों का गुणनफल होगा
माना $x ^{2}-3 x + p =0$ के मूल $\alpha$ तथा $\beta$ एवं $x ^{2}-6 x + q =0$ के मूल $\gamma$ तथा $\delta$ है। यदि $\alpha, \beta, \gamma, \delta$ गुणोत्तर श्रेढ़ी के रूप में है। तब अनुपात $(2 q+p):(2 q-p)$ होगा