यदि अनन्त पदों वाली किसी गुणोत्तर श्रेणी का योगफल $9$ तथा प्रथम दो पदों का योगफल $5$ हो, तो सार्वनिष्पति होगी
$1/3$
$3/2$
$3/4$
$2/3$
उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
यदि $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=$ $S -211$, तो $S$ बराबर है
एक अनंत गुणोत्तर श्रेणी, जिसका प्रथम पद $a$ तथा सार्वानुपात $r$ है, का योग $4$ तथा द्वितीय पद $3/4$ है, तब
किसी गुणोत्तर श्रेणी में $S , n$ पदों का योग, $P$ उनका गुणनफल तथा $R$ उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि $P ^{2} R ^{n}= S ^{n}$.
यदि किसी धनात्मक गुणोत्तर श्रेणी का प्रत्येक पद अपने पूर्व के दो पदों के योग के बराबर है, तो श्रेणी का सार्व-अनुपात होगा