જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
અસમતા એ $y$ ની બે પૂર્ણાક કિમતોથી સંતોષાય છે
અસમતાના બધા ઉકેલો $y \in (-4, 2)$ માં મળે
સમીકરણના ઉકેલો સમાન ચિહનોના છે
${x^2} + \alpha x + \beta > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$
$\mathrm{k}(\mathrm{k} \neq 0 )$ ની બધીજ પૂર્ણાંક સંખ્યાનો સરવાળો મેળવો કે જેથી $x$ નું સમીકરણ $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ ને એકપણ વાસ્તવિક બીજ ન હોય .
સમીકરણ $x^2 + 5 | x | + 4 = 0$ ના વાસ્તવિક બીજ કયા છે ?
જો $a, b, c$ વાસ્તવિક હોય અને $a > 0$ હોય, તો $ax^2 + bx + c$ જ્યાં $x$ પણ વાસ્તવિક હોય તેનું લઘુત્તમ મૂલ્ય કેટલું થાય ?