જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
અસમતા એ $y$ ની બે પૂર્ણાક કિમતોથી સંતોષાય છે
અસમતાના બધા ઉકેલો $y \in (-4, 2)$ માં મળે
સમીકરણના ઉકેલો સમાન ચિહનોના છે
${x^2} + \alpha x + \beta > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$
જો $x = \sqrt {7 + 4\sqrt 3 } $, હોય તો $, x + \frac{1}{x} = ......$
સમીકરણ $(x+1)^{2}+|x-5|=\frac{27}{4}$નાં વાસ્તવિક બીજોની સંખ્યા ...... છે.
જો સમીકરણ $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ ને $k$ વાસ્તવિક ઉકેલો હોય તો $k$ ની કિમત મેળવો
જો $(x + 1)$ એ સમીકરણ ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$ નો એક અવયવ હોય તો $p = $. . . .
જો $P(x) = x^3 - ax^2 + bx + c$ જ્યાં $a, b, c \in R$ ને પૂર્ણાક ઉકેલો મળે કે જેથી $P(6) = 3$, થાય તો $' a '$ ની કિમત ......... શક્ય નથી