જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )
$41$
$39$
$40$
$43$
જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
જો $a, b, c$ એ ત્રિકોણની ત્રણ બાજુઓ છે. જે $\left(a^2+\right.$ $\left.b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ નું સમાધાન કરે છે. જો $x$ ના શક્ય ઉકેલોનો ગણ $(\alpha, \beta)$ છે. તો $12\left(\alpha^2+\beta^2\right)=$............................
ધારોકે $x_1, x_2, x_3, x_4$ એ સમીકરણ $4 x^4+8 x^3-17 x^2-12 x+9=0$ નાં બીજ છે અને $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. તો $m$ નું મૂલ્ય ............ છે.
$m$ ના કયા મૂલ્ય માટે સમીકરણ $y^2 + 2xy + 2x + my - 3$ ને બે સંમેય અવયવ ઉકેલી શકાય ?
સમીકરણ $x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા__________ છે.