Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement
"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as
$ \sim Q \leftrightarrow \, \sim P \vee R$
$ \sim Q \leftrightarrow \, \sim P \wedge R$
$ \sim Q \leftrightarrow P\, \vee \sim R$
$ \sim Q \leftrightarrow P\, \wedge \sim R$
Which of the following statements is a tautology?
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
$(\sim (\sim p)) \wedge q$ is equal to .........
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is
Which of the following statement is a tautology?