निम्न समीकरण निकाय पर विचार कीजिए : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ जहाँ $a , b$ तथा $c$ वास्तविक अचर हैं। तो इस समीकरण निकाय:
का केवल एक हल है जब $5 a =2 b + c$ है
के अनन्त हल हैं जब $5 a =2 b + c$ है
का सभी $a, b$ तथा $c$ के लिए कोई हल नहीं है
का समी $a , b$ तथा $c$ के लिए केवल एक हल है
$\lambda$ के वास्तविक मानों, जिनके लिए रैखिक समीकरण निकाय
$2 x -3 y +5 z =9$
$x +3 y - z =-18$
$3 x - y +\left(\lambda^2-|\lambda|\right) z =16$
का कोई हल नहीं है, की संख्या है :-
$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $
$k$ के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा
$k \in R$ का वह मान, जिसके लिए रैखिक समीकरण निकाय
$3 x-y+4 z=3$
$x+2 y-3 z=-2$
$6 x+5 y+k z=-3$ के अनन्त हल है,
$\alpha $ के किस मान के लिए समीकरणों $a + b - 2c = 0,$ $2a - 3b + c = 0$ और $a - 5b + 4c = \alpha $ का हल समुच्चय संगत है