Consider the following three statements :
$P : 5$ is a prime number.
$Q : 7$ is a factor of $192$.
$R : L.C.M.$ of $5$ and $7$ is $35$.
Then the truth value of which one of the following statements is true?

  • [JEE MAIN 2019]
  • A

    $\left( { \sim P} \right) \vee \left( {Q \wedge R} \right)$

  • B

    $\left( {P \wedge Q} \right) \vee \left( { \sim R} \right)$

  • C

    $\left( { \sim P} \right) \wedge \left( { \sim Q \wedge R} \right)$

  • D

    $P \vee \left( { \sim Q \wedge R} \right)$

Similar Questions

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is 

  • [JEE MAIN 2020]

$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is

Dual of $(x \vee y) \wedge (x \vee 1) = x \vee (x \wedge y) \vee y$ is

Consider the following statements:

$P$ : I have fever

$Q:$ I will not take medicine

$R$ : I will take rest

The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:

  • [JEE MAIN 2023]

Statement $p$ $\rightarrow$  ~$q$ is false, if