Consider the following three statements :
$P : 5$ is a prime number.
$Q : 7$ is a factor of $192$.
$R : L.C.M.$ of $5$ and $7$ is $35$.
Then the truth value of which one of the following statements is true?
$\left( { \sim P} \right) \vee \left( {Q \wedge R} \right)$
$\left( {P \wedge Q} \right) \vee \left( { \sim R} \right)$
$\left( { \sim P} \right) \wedge \left( { \sim Q \wedge R} \right)$
$P \vee \left( { \sim Q \wedge R} \right)$
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is
Dual of $(x \vee y) \wedge (x \vee 1) = x \vee (x \wedge y) \vee y$ is
Consider the following statements:
$P$ : I have fever
$Q:$ I will not take medicine
$R$ : I will take rest
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:
Statement $p$ $\rightarrow$ ~$q$ is false, if