- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
easy
Consider the function $f(x) = {e^{ - 2x}}$ $sin\, 2x$ over the interval $\left( {0,{\pi \over 2}} \right)$. A real number $c \in \left( {0,{\pi \over 2}} \right)\,,$ as guaranteed by Rolle’s theorem, such that $f'\,(c) = 0$ is
A
$\pi /8$
B
$\pi /6$
C
$\pi /4$
D
$\pi /3$
Solution
(a) $f(x) = {e^{ – 2x}}\sin 2x$ ==> $f'(x) = 2{e^{ – 2x}}(\cos 2x – \sin 2x)$
Now, $f'(c) = 0$
==>$\cos 2c – \sin 2c = 0$==>$\tan 2c = 1$==>$c = \frac{\pi }{8}$.
Standard 12
Mathematics