5. Continuity and Differentiation
easy

अन्तराल $\left( {0,\frac{\pi }{2}} \right)$ में फलन $f(x) = {e^{ - 2x}}$ $sin 2x $है। रोले प्रमेय के अनुसार एक वास्तविक संख्या $c \in \left( {0,\frac{\pi }{2}} \right)$ इस प्रकार है कि $f'\,(c) = 0$, तब 

A

$\pi /8$

B

$\pi /6$

C

$\pi /4$

D

$\pi /3$

Solution

(a) $f(x) = {e^{ – 2x}}\sin 2x$ ==> $f'(x) = 2{e^{ – 2x}}(\cos 2x – \sin 2x)$

अब,  $f'(c) = 0$

==> $\cos 2c – \sin 2c = 0$==>$\tan 2c = 1$==> $c = \frac{\pi }{8}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.