तत्समक फलन $I _{N }: N \rightarrow N$ पर विचार कीजिए, जो $I _{ N }(x)=x, \forall x \in N$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि $I _{ N }$ आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $I _{ N }+ I _{ N }: N \rightarrow N$ आच्छादक नहीं है
$\left( I _{ N }+ I _{ N }\right)(x)= I _{ N }(x)+ I _{ N }(x)=x+x=2 x$
Clearly $I_{N}$ is onto. But $I_{N}+I_{N}$ is not onto, as we can find an element $3$ in the co-domain $N$ such that there does not exist any $x$ in the domain $N$ with $\left( I _{ N }+ I _{ N }\right)(x)=2 x=3$
यदि $f:R \to R$; $f(x + y) = f(x) + f(y)$, को संतुष्ट करता है; सभी $x,\;y \in R$ के लिए तथा $f(1) = 7$, तब $\sum\limits_{r = 1}^n {f(r)} $ का मान है
$x \in R , x \neq 0, x \neq 1$ के लिए माना $f_{0}(x)=\frac{1}{1-x}$ तथा $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right), n=0,1,2, \ldots$ है, तो $f_{100}(3)+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)$ बराबर है
दो सम्बन्ध $R_{1}$ तथा $R_{2}$ नीचे दिए गए हैं:
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ तथा $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$ जहाँ सभी परिमेय संख्याओं का समुच्चय है, तो:
एक फलन $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}$, के लिए $\mathrm{f}(1)+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots+\mathrm{xf}(\mathrm{x})=\mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x}) ;$ $\mathrm{x} \geq 2$ तथा $\mathrm{f}(1)=1$ है तो $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}$ बराबर है
माना $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$, तब समुच्चय $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ है