तत्समक फलन $I _{N }: N \rightarrow N$ पर विचार कीजिए, जो $I _{ N }(x)=x, \forall x \in N$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि $I _{ N }$ आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $I _{ N }+ I _{ N }: N \rightarrow N$ आच्छादक नहीं है

$\left( I _{ N }+ I _{ N }\right)(x)= I _{ N }(x)+ I _{ N }(x)=x+x=2 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Clearly $I_{N}$ is onto. But $I_{N}+I_{N}$ is not onto, as we can find an element $3$ in the co-domain $N$ such that there does not exist any $x$ in the domain $N$ with $\left( I _{ N }+ I _{ N }\right)(x)=2 x=3$

Similar Questions

एक फलन $f$ सभी धनात्मक पूर्णांक संख्याओं के समुच्चय के लिए इस प्रकार परिभाषित है: $f(x y)=f(x)+f(y)$, जहाँ $x$ और $y$ धनात्मक है. यदि $f(12)=24$ तथा $f(8)=15$ है, तो $f(48)$ का मान होगा

  • [KVPY 2016]

माना एक फलन $f : R \rightarrow R$ प्रत्येक $x , y \in R$ के लिए $f ( x + y )= f ( x )+ f ( y )$ को संतुष्ट करता है। यदि $f(1)=2$ तथा $g(n)=\sum_{ k =1}^{( n -1)} f ( k ), n \in N$ है, तो $n$ का वह मान जिसके लिए $g ( n )=20$ हैं

  • [JEE MAIN 2020]

दिया गया फलन है  $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},$ $(a > 2)$ तब $f(x + y) + f(x - y) = $

यदि शून्येतर वास्तविक संख्याएँ $b$ तथा $c$ ऐसी हैं कि $\min f(x)>\max g(x)$, जहाँ $f(x)=x^{2}+2 b x+2 c ^{2}$ तथा $g (x)=-x^{2}-2 c x+ b ^{2}(x \in R )$ हैं, तो $\left|\frac{ c }{ b }\right|$ जिस अंतराल में है, वह है

  • [JEE MAIN 2014]

फलन $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ का प्रान्त है