$L _1$ और $L _2$ द्वारा परिभाषित रेखाओं
$L _1: x \sqrt{2}+ y -1=0 \text { और } L _2: x \sqrt{2}- y +1=0$
पर विचार कीजिए। किसी नियत अचर (fixed constant) $\lambda$ के लिए, मान लीजिए कि $C$ एक बिन्दु $P$ का ऐसा बिन्दुपथ (locus) है कि $P$ से $L _1$ की दूरी और $P$ से $L _2$ की दूरी का गुणनफल $\lambda^2$ है। रेखा $y =2 x +1, C$ को दो बिन्दुओं $R$ और $S$ पर मिलती है, जहाँ $R$ और $S$ के बीच की दूरी $\sqrt{270}$ है।
मान लीजिए कि RS का लंब समद्विभाजक (perpendicular bisector), $C$ को दो भिन्न बिन्दुओं R' और $S ^{\prime}$ पर मिलता है। मान लीजिए कि $R ^{\prime}$ और $S ^{\prime}$ के बीच की दूरी के वर्ग (square of the distance) का मान $D$ है।
($1$) $\lambda^2$ का मान. . . . . है।
($2$) $D$ का मान. . . . . है।
$9,77.15$
$9,77.14$
$9,90.14$
$8,77.15$
एक बिन्दु $P$, रेखा $2 x -3 y +4=0$ पर गति करता है। यदि $Q (1,4)$ तथा $R (3,-2)$ निशिचत बिन्दु हैं, तो $\triangle PQR$ के केन्द्रक का बिन्दुपथ (locus) एक रेखा है
दर्शाइए कि रेखाओं
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ और $x=0$ से बने त्रिभुज का क्षेत्रफल $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ है।
कार्तीय तल का मूल बिन्दु $O$ है । आपको वास्तविक संख्यायें $b, d > 0$ दी गई हैं |रेखाखण्ड $O P$, जहां $P(r, \theta)$ एक चर बिंदु है, रेखा $r \sin \theta=b$ को बिन्दु $Q$ पर इस प्रकार काटता है कि $P Q=d \mid$ तब ऐसे सभी $P(r, \theta)$ बिन्दुओं का बिंदुपथ होगा:
माना रेखाओं $x - y +1=0, x -2 y +3=0$ तथा $2 x -5 y +11=0$ के प्रतिच्छेदन बिन्दु एक त्रिभुज $ABC$ की भुजाओं के मध्य बिन्दु हैं। तब त्रिभुज $ABC$ का क्षेत्रफल है
$\mathrm{X}$ - अक्ष, $\mathrm{Y}$ - अक्ष तथा रेखा $3 \mathrm{x}+4 \mathrm{y}=60$ एक त्रिभुज बनाते है। तो ऐसे बिन्दुओं $\mathrm{P}(\mathrm{a}, \mathrm{b})$ जहाँ $\mathrm{a}$ पूर्णांक है तथा $b, a$ का एक गुणज है, जो त्रिभुज के अंदर हैं, की संख्या है____________.