यदि एक समांतर चतुर्भु ज $ABDC$ के बिन्दुओं $A , B$ तथा $C$ के निर्देशांक क्रमशः $(1,2),(3,4)$ तथा $(2,5)$ हैं, तो विकर्ण $AD$ का समीकरण है
$5x - 3y +1 = 0$
$5x + 3y -11 = 0$
$3x - 5y + 7 = 0$
$3x + 5y -13 = 0$
रेखाओं $x = 0,y = 0$ व $\frac{x}{a} + \frac{y}{b} = 1$ द्वारा बने त्रिभुज का क्षेत्रफल है
त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
मान लीजिए $m, n$ वास्तविक संख्याएँ इस तरह है: $0 \leq m \leq \sqrt{3}$ तथा $-\sqrt{3} \leq n \leq 0$ |एक तल, जिस पर बिन्दु $(x, y)$ असमानताएँ $(inequalities)$ $y \geq 0, y-3 \leq m x, y-3 \leq n x$ को संतुश्श करती है, का न्यूनतम संभावित क्षेत्रफल क्या होगा?
$xy$-समतल में किसी वर्ग के दो विपरीत शीर्ष $A(-1, 1)$, $B(5, 3)$ हैं, तो वर्ग के अन्य विकर्ण का समीकरण ($A, B$ से न जाने वाला) होगा
$a$ भुजा का एक वर्ग $x$ -अक्ष के ऊपर स्थित है, वर्ग का एक शीर्ष मूलबिन्दु पर है। मूलबिन्दु से गुजरने वाली भुजा $x$ - अक्ष की धनात्मक दिशा से $\alpha $ कोण बनाती है, $\left( {0 < \alpha < \frac{\pi }{4}} \right)$. वर्ग के मूल बिन्दु से नहीं गुजरने वाले विकर्ण का समीकरण है