माना $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(3,4)$ तथा $(-6,-8)$ एक त्रिभुज के केन्द्रक. परिकेन्द्रक तथा लंबकेन्द्र है। तो बिंदु $P(2 a+3,7 b+5)$ की रेखा $2 x+3 y-4=0$ से, रेखा $\mathrm{x}-2 \mathrm{y}-1=0$ समांतर नापी गई दूरी है।
$\frac{15 \sqrt{5}}{7}$
$\frac{17 \sqrt{5}}{6}$
$\frac{17 \sqrt{5}}{7}$
$\frac{\sqrt{5}}{17}$
समद्विबाहु समकोण त्रिभुज की एक भुजा का समीकरण, जिसका कर्ण $3x + 4y = 4$ एवं सामने वाला शीर्ष $(2, 2)$ है, होगा
त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
रेखाओं $x + y - 4 = 0,\,$ $3x + y = 4$ तथा $x + 3y = 4$ से बना त्रिभुज है
किसी त्रिभुज की भुजाएँ $x - 3y = 0$, $4x + 3y = 5$ व $3x + y = 0$ हैं, तो रेखा $3x - 4y = 0$ गुजरती है
एक सरल रेखा, बिन्दु $(1, 1)$ से गुजरती है व $x$-अक्ष को ‘$A$’ तथा $y$-अक्ष को ‘$B’$ पर मिलती है, तब $AB$ के मध्य बिन्दु का बिन्दुपथ होगा