द्विघात समीकरण $n x^2+7 \sqrt{n} x+n=0$ में $n$ एक धनात्मक पूर्णांक संख्या है. निम्नलिखित में कौन सा कधन निध्रित रूप से सत्य है ?
$I$. किसी भी $n$ के लिए, समीकरण के मूल भिन्न होंगे,
$II$. $n$ के अन्नत मान होंगे यदि दोनों मूल वास्तबिक है.
$III$. मूलों का गुणनफल निश्रय ही एक पूर्णांक है.
केवल $III$
केवल $I$ तथा $III$
केवल $II$ तथा $III$
$I,II$ तथा $III$
$\lambda $ के किस मान के लिये समीकरण ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ के मूलों के वर्गो का योग न्यूनतम होगा
इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है और $\{x\}=x-[x]$ | अंतराल $0 \leq x \leq 2015$ में समीकरण $[x]\{x\}=5$ के कितने शून्यक हैं ?
इन दो कथनों पर विचार करें :
$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।
$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।
यदि समीकरण ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ के मूलों का गुणनफल $7$ है, तो इसके मूल वास्तविक होंगे जब
समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है