Consider two straight lines, each of which is tangent to both the circle $x ^2+ y ^2=\frac{1}{2}$ and the parabola $y^2=4 x$. Let these lines intersect at the point $Q$. Consider the ellipse whose center is at the origin $O (0,0)$ and whose semi-major axis is $OQ$. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement($s$) is (are) $TRUE$?
$(A)$ For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $1$
$(B)$ For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
$(C)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$
$(D)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$
$A,B$
$A,D$
$A,C$
$A,B,C$
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is
The sum of focal distances of any point on the ellipse with major and minor axes as $2a$ and $2b$ respectively, is equal to
Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$, passes through $\left(\sqrt{\frac{3}{2}}, 1\right)$ and has ecentricity $\frac{1}{\sqrt{3}} .$ If a circle, centered at focus $\mathrm{F}(\alpha, 0), \alpha>0$, of $\mathrm{E}$ and radius $\frac{2}{\sqrt{3}}$, intersects $\mathrm{E}$ at two points $\mathrm{P}$ and $\mathrm{Q}$, then $\mathrm{PQ}^{2}$ is equal to:
Maximum length of chord of the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, such that eccentric angles of its extremities differ by $\frac{\pi }{2}$ is