Determine $n$ if
$^{2 n} C_{3}:^{n} C_{3}=11: 1$
$\frac{^{2 n} C_{3}}{^{n} C_{3}}=\frac{11}{1}$
$\Rightarrow \frac{(2 n) !}{3 !(2 n-3) !} \times \frac{3 !(n-3) !}{n !}=11$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) !}{(2 n-3) !} \times \frac{(n-3) !}{n(n-1)(n-2)(n-3) !}$
$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=11$
$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=11$
$\Rightarrow \frac{4(2 n-1)}{n-2}=11$
$\Rightarrow 4(2 n-1)=11(n-2)$
$\Rightarrow 8 n-4=11 n-22$
$\Rightarrow 11 n-8 n=-4+22$
$\Rightarrow 3 n=18$
$\Rightarrow n=6$
The set $S = \left\{ {1,2,3, \ldots ,12} \right\}$ is to be partitioned into three sets $A,\,B,\, C$ of equal size . Thus $A \cup B \cup C = S$ અને $A \cap B = B \cap C = C \cap A = \emptyset $ . The number of ways to partition $S$ is
In the $13$ cricket players $4$ are bowlers, then how many ways can form a cricket team of $11$ players in which at least $2$ bowlers included
Let $A=\left[a_{i j}\right], a_{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$. The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is $........$.
Determine the number of $5$ card combinations out of a deck of $52$ cards if there is exactly one ace in each combination.
If ${a_n} = \sum\limits_{r = 0}^n {} \frac{1}{{^n{C_r}}}$ then $\sum\limits_{r = 0}^n {} \frac{r}{{^n{C_r}}}$ equals