ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
Let $A=\{5,6,7\}$
Define a relation $R$ on $A$ as $R =\{(5,6),(6,5)\}$
Relation $R$ is not reflexive as $(5,5),\,(6,6),\,(7,7) \notin R$
Now, as $(5,6)\in R$ and also $(6,5) \in R , R$ is symmetric.
$\Rightarrow(5,6),\,(6,5) \in R,$ but $(5,5)\notin R$
$\therefore R$ is not transitive.
Hence, relation $R$ is symmetric but not reflexive or transitive.
माना $X = \{ 1,\,2,\,3,\,4,\,5\} $ तथा $Y = \{ 1,\,3,\,5,\,7,\,9\} $, निम्न में से कौनसा $X$ और $Y$ में संबंध है।
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ के पिता हैं$\}$
मान लीजिए कि समुच्चय $\{1,2,3,4\}$ में, $R =\{(1,2),(2,2),(1,1),(4,4),$ $(1,3),(3,3),(3,2)\}$ द्वारा परिभाषित संबंध $R$ है। निम्नलिखित में से सही उत्तर चुनिए।
समुच्चय $A =\{ a , b , c \}$ पर निम्न दो द्विआधारी संबंधों पर विचार कीजिए
$R _{1}=\{( c , a ),( b , b ),( a , c ),( c , c ),( b , c ),( a , a )\}$
और $R _{2}=\{( a , b ),( b , a ),( c , c ),( c , a ),( a , a ),( b , b ),( a , c )\}$ तो
माना $\mathrm{S}=\{1,2,3, \ldots, 10\}$ है। माना $\mathrm{S}$ के सभी उपसमुच्चयों का समुच्चय $M$ है, तो संबंध $\mathrm{R}=\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}\}$ है :