કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ ની ઊંચાઈ $y$ ની ઊંચાઈ કરતાં બરાબર $7$ સેમી વધારે છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
$R =\{( x , y ): x$ is exactly $7\,cm$ taller than $y\}$
Now, $(x, x) \notin R$
since human being $x$ cannot be taller than himself.
$\therefore R$ is not reflexive.
Now, let $(x, y) \in R$
$\Rightarrow x$ is exactly $7 \,cm$ taller than $y$.
Then, $y$ is not taller than $x$ . $[$ since, $y $ is $7$ $cm$ smaller than $x]$
$\therefore(y, \,x) \notin R$
Indeed if $x$ is exactly $7 \,cm$ taller than $y$, then $y$ is exactly $7\, cm$ shorter than $x$.
$\therefore \,R$ is not symmetric.
Now,
Let $( x , \,y ),\,( y ,\, z ) \in R$
$\Rightarrow \,x$ is exactly $7 \,cm$ taller than $y$ and $y$ is exactly $7\, cm$ taller than $z$.
$\Rightarrow \,x$ is exactly $14\, cm$ taller than $z$
$\therefore(x,\, z) \notin R$
$\therefore \,R$ is not transitive.
Hence, $R$ is neither reflexive, nor symmetric, nor transitive.
ધારો કે ગણ $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k}$ છે. જ્યાં $i \neq j, 1 \leq i, j \leq k$ માટે $A _{i} \cap A _{i}=\phi$ છે. $A$ થી $A$ પરનો સંબંધ $R$ એ $R =\left\{(x, y): y \in A _{i}\right.$ તો અને તો જ $\left.x \in A _{i}, 1 \leq i \leq k\right\}$ પ્રમાણે વ્યાખ્યાયિત કરો.તો $R$ એ :
ધારોકે $A =\{1,2,3,4, \ldots ., 10\}$ અને $B =\{0,1,2,3,4\}$. સંબંધ $R =\left\{( a , b ) \in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ માં ધટકોની સંખ્યા $..........$ છે.
જો $M$ $3 \times 3$ નો શ્રેણિક દર્શાવે અને સંબંધ $R$ માટે
$R = \{ (A,B) \in M \times M$ : $AB = BA\} ,$ હોય તો $R$ એ...........
જો સંબંધ $R$ એ $A$ થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ . . .
જો $n(A) = m$ હોય તો ગણ $A$ પરના બધા સ્વવાચક સંબંધોની સંખ્યાઓ મેળવો.