1.Relation and Function
medium

કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ ની ઊંચાઈ $y$ ની ઊંચાઈ કરતાં બરાબર $7$ સેમી વધારે છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?

Option A
Option B
Option C
Option D

Solution

$R =\{( x , y ): x$ is exactly $7\,cm$ taller than $y\}$

Now, $(x, x) \notin R$

since human being $x$ cannot be taller than himself.

$\therefore R$ is not reflexive.

Now, let $(x, y) \in R$

$\Rightarrow x$ is exactly $7 \,cm$ taller than $y$.

Then, $y$ is not taller than $x$ . $[$ since, $y $ is $7$ $cm$ smaller than $x]$

$\therefore(y, \,x) \notin R$

Indeed if $x$ is exactly $7 \,cm$ taller than $y$, then $y$ is exactly $7\, cm$ shorter than $x$.

$\therefore \,R$ is not symmetric.

Now,

Let $( x , \,y ),\,( y ,\, z ) \in R$

$\Rightarrow \,x$ is exactly $7 \,cm$ taller than $y$ and $y$ is exactly $7\, cm$ taller than $z$.

$\Rightarrow \,x$ is exactly $14\, cm$ taller than $z$

$\therefore(x,\, z) \notin R$

$\therefore \,R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.