एक अतिपरवलय का केन्द्र मूलबिन्दु पर है तथा यह बिन्दु $(4,-2 \sqrt{3})$ से होकर जाता है। यदि इसकी एक नियता (directrix) $5 x =4 \sqrt{5}$ है तथा इसकी उत्केन्द्रता $e$ है, तो
$4e^4 + 8e^2 -35 = 0$
$4e^4 -24e^2 + 35 = 0$
$4e^4 -12e^2 -27 = 0$
$4e^4 -24e^2 + 27 = 0$
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}-9 y^{2}=576$
एक अतिपरवलय $H : x ^{2}-2 y ^{2}=4$ का विचार कीजिए। माना बिंदु $P (4, \sqrt{6})$ पर स्पर्श रेखा $x$-अक्ष को $Q$ पर मिलती है तथा नाभि जीवा को $R \left( x _{1}, y _{1}\right)$, $x _{1}>0$ पर मिलती है। यदि $H$ की नाभि $F$ बिंदु $P$ के निकट है, तो $\triangle QFR$ का क्षेत्रफल बराबर है
अतिपरवलय की किन्हीं दो लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ एक वृत्त होता है जिसे अतिपरवलय का नियामक वृत्त कहते है, तो इस वृत्त का समीकरण है
यदि अतिपरवलय की नाभियाँ $(5, 0)$ तथा $(-5, 0)$ और संयुग्मी अक्ष $8$ हो, तो अतिपरवलय का समीकरण होगा
रेखाओं $ax\sec \theta + by\tan \theta = a$ तथा $ax\tan \theta + by\sec \theta = b$, जहाँ $\theta $ प्राचल है, के प्रतिच्छेद बिन्दु का बिन्दुपथ है