10-2. Parabola, Ellipse, Hyperbola
medium

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(\pm 2,0),$ नाभियाँ $(±3,0)$

A

$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

B

$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

C

$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

D

$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

Solution

Vertices $(\pm 2,\,0),$ foci $(±3,\,0)$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the vertices are $(\pm 2,\,0)$,  $a =2$

since the foci are $(\pm 3,\,0)$,  $c=3$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore 2^{2}+b^{2}=3^{2}$

$b^{2}=9-4=5$

Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.