उस दीर्घवृत्त की उत्केन्द्रता जिसका नाभिलम्ब, नाभियों के बीच की दूरी के बराबर है, होगी
$\frac{{\sqrt 5 + 1}}{2}$
$\frac{{\sqrt 5 - 1}}{2}$
$\frac{{\sqrt 5 }}{2}$
$\frac{{\sqrt 3 }}{2}$
यदि दीर्घवत्त, $x ^{2}+4 y ^{2}=4$ की एक स्पर्शरेखा, इसके दीर्घ अक्ष के छोरों पर खींची गई स्पर्श रेखाओं को बिन्दुओं $B$ तथा $C$ पर मिलती है, तो $BC$ को व्यास मान कर खींचा गया वत्त निम्न में से किस बिन्दु से होकर जाता है ?
$x$ तथा $y$ अक्ष एक दीर्यवृत्त $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1, a > b$, की स्पर्श रेखाएँ हैं, तथा यह दीर्षवृत्त पहले चुर्थांश में स्थित है। मान लीजिए $F_1$ एंव $F_2$ दीर्घवृत्त के दो केन्द्रीय बिंदु $(foci)$ हैं, तथा मूल बिन्दु $O$ इस तरह है कि $O F_1 < O F_2 \mid$ अगर $O F_1 F_2$ एक समद्विबाहु त्रिभुज है, जिसमें $\angle O F_1 F_2=120^{\circ}$, तब दीर्घवृत्त की उत्तेन्द्रता $(eccentricity)$ क्या होगी ?
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}+y^{2}=16$
यदि वक्रों $\frac{x^2}{16}+\frac{y^2}{9}=1$ और $x^2+y^2=12$ की उभयनिष्ट स्पर्श रेखा की ढाल $m$ हो तो $12 m ^2$ का मान होगा
किसी दीर्घवृत्त की नाभियों के बीच की दूरी $6$ व लघुअक्ष $8$ है तो इसकी उत्केन्द्रता होगी