उस दीर्घवृत्त की उत्केन्द्रता जिसका नाभिलम्ब, नाभियों के बीच की दूरी के बराबर है, होगी
$\frac{{\sqrt 5 + 1}}{2}$
$\frac{{\sqrt 5 - 1}}{2}$
$\frac{{\sqrt 5 }}{2}$
$\frac{{\sqrt 3 }}{2}$
एक दीर्घवृत्त के नाभिलम्ब की लम्बाई दीर्घ अक्ष की $\frac{1}{3}$ है, तो इसकी उत्केन्द्रता होगी
दीर्घवृत्त $4{x^2} + 9{y^2} = 1$ पर वे बिन्दु, जहाँ पर इसकी स्पर्श रेखाएँ, रेखा $8x = 9y$ के समान्तर हैं, है
यदि एक दीर्घवृत्त की नाभिलम्ब जीवा के एक किनारे पर अभिलम्ब लघु अक्ष के एक शीर्ष से होकर जाता है, तो दीर्घवृत्त की उत्केन्द्रता $e$ सन्तुष्ट करती है
दीर्घवृत्त $3 x ^{2}+5 y ^{2}=32$ के बिन्दु $P (2,2)$ पर खींची गई स्पर्श रेखा तथा अभिलंब, $x$-अक्ष को क्रमशः $Q$ तथा $R$ पर काटते है। तो त्रिभुज $PQR$ का क्षेत्रफल (वर्ग इकाइयों में) हैं
उस दीर्घवृत्त का समीकरण जिसका केन्द्र मूलबिन्दु है तथा जो बिन्दुओं $(-3, 1)$ तथा $(2, -2)$ से गुजरता है, है