Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as  $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$

$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.

$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation  is dimensionally incorrect. Write the correct relation.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ We know that,

$1 \mathrm{amu}= 1 u=1.67 \times 10^{-27} \mathrm{~kg}$

$\text { Applying } \mathrm{E}=m c^{2}$

$\text { Energy } =\mathrm{E}=\left(1.67 \times 10^{-27}\right)\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$

$ 1.67 \times 9 \times 10^{-11} \mathrm{~J}$

$\mathrm{E} =\frac{1.67 \times 9 \times 10^{-11}}{1.6 \times 10^{-13}} \mathrm{MeV}$

$=939.4 \mathrm{MeV} \approx 931.5 \mathrm{MeV}$

$(b)$ The dimensionally correct relation is, $1 \mathrm{amu} \times c^{2}=1 u \times c^{2}=931.5 \mathrm{MeV}$

Similar Questions

If force $(F)$, velocity $(V)$ and time $(T)$ are considered as fundamental physical quantity, then dimensional formula of density will be:

  • [JEE MAIN 2023]

$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-

Given below are two statements: One is labelled as Assertion $(A)$ and other is labelled as Reason $(R)$.

Assertion $(A)$ : Time period of oscillation of a liquid drop depends on surface tension $(S)$, if density of the liquid is $p$ and radius of the drop is $r$, then $T = k \sqrt{ pr ^{3} / s ^{3 / 2}}$ is dimensionally correct, where $K$ is dimensionless.

Reason $(R)$: Using dimensional analysis we get $R.H.S.$ having different dimension than that of time period.

In the light of above statements, choose the correct answer from the options given below.

  • [JEE MAIN 2022]

The dimensional formula for the modulus of rigidity is

  • [IIT 1982]

The dimensions of "time constant" $\frac{L}{R}$ during growth and decay of current in all inductive circuit is same as that of