Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
$(a)$ We know that,
$1 \mathrm{amu}= 1 u=1.67 \times 10^{-27} \mathrm{~kg}$
$\text { Applying } \mathrm{E}=m c^{2}$
$\text { Energy } =\mathrm{E}=\left(1.67 \times 10^{-27}\right)\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$
$ 1.67 \times 9 \times 10^{-11} \mathrm{~J}$
$\mathrm{E} =\frac{1.67 \times 9 \times 10^{-11}}{1.6 \times 10^{-13}} \mathrm{MeV}$
$=939.4 \mathrm{MeV} \approx 931.5 \mathrm{MeV}$
$(b)$ The dimensionally correct relation is, $1 \mathrm{amu} \times c^{2}=1 u \times c^{2}=931.5 \mathrm{MeV}$
Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$. If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$, where $k$ is a dimensionless constant. Correct values of $a, b$ and $c$ are
The Bernoulli's equation is given by $p +\frac{1}{2} \rho v ^{2}+ h \rho g = k$
where $p =$ pressure, $\rho =$ density, $v =$ speed, $h =$ height of the liquid column, $g=$ acceleration due to gravity and $k$ is constant. The dimensional formula for $k$ is same as that for
The value of gravitational acceleration $C.G.S.$ system is $980 \;cm / sec$ ? .find the value of $g$ in $M.K.S$ system?
A physical quantity $\vec{S}$ is defined as $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$, where $\vec{E}$ is electric field, $\vec{B}$ is magnetic field and $\mu_0$ is the permeability of free space. The dimensions of $\vec{S}$ are the same as the dimensions of which of the following quantity (ies)?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$
A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is: