નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$(ii)$ $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ ના બીજ મેળવો.
જો રેખાઓ $2 x-y+3=0,6 x+3 y+1=0$ અને $\alpha x+2 y-2=0$ ત્રિકોણ ન બનાવે તેવી $\alpha$ ની તમામ વાસ્તવિક સંખ્યાઓના વર્ગનો સરવાળો $p$ હોય, તો $p$ અથવા તેનાથી નાનો મહત્તમ પૂણાંક___________ છે.
$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=
સુરેખ સમીકરણોની સંહતિ $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ ને . . . .