$\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|= . . .. $

  • A

    $a + b + c$

  • B

    ${(a + b + c)^2}$

  • C

    $0$

  • D

    $1 + a + b + c$

Similar Questions

ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$

  • [JEE MAIN 2023]

જો સમીકરણોની સંહતિ $kx + 2y - z = 2,$$\left( {k - 1} \right)x + ky + z = 1,x + \left( {k - 1} \right)y + kz = 3$ ને માત્ર એકજ ઉકેલ હોય તો $k$ ની શક્ય વાસ્તવિક કિમંતોની સંખ્યા મેળવો.

$\lambda $ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણો $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ ને અનંત ઉકેલ મળે.

  • [JEE MAIN 2017]

જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત  . . .

  • [JEE MAIN 2014]

જો ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\ 
  {{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}} 
\end{array}} \right|$ ની કિમંત મેળવો.