3 and 4 .Determinants and Matrices
easy

$\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|= . . .. $

A

$a + b + c$

B

${(a + b + c)^2}$

C

$0$

D

$1 + a + b + c$

Solution

(c) $\Delta = \left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right| = (a + b + c)\,\left| {\,\begin{array}{*{20}{c}}1&1&{b + c}\\1&1&{c + a}\\1&1&{a + b}\end{array}\,} \right|$
$({C_2} \to {C_2} + {C_3})= 0$,

 $(\because \,\,{{C}_{1}}\equiv {{C}_{2}})$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.