माना एक $A.P.$ के किसी भी तीन भिन्न क्रमागत पदों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए रेखाएं $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ एक बिंदु $\mathrm{P}$ पर संगामी हैं तथा बिंदु $\mathrm{Q}(\alpha, \beta)$ के लिए समीकरण निकांय $x+y+z=6,2 x+5 y+\alpha z=\beta$ तथा $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=4$, के अंतंत हल है। तो $(\mathrm{PQ})^2$ बराबर है ..........|
$123$
$113$
$421$
$131$
यदि $\Delta_{ r }=\left|\begin{array}{ccc} r & 2 r -1 & 3 r -2 \\ \frac{ n }{2} & n -1 & a \\ \frac{1}{2} n ( n -1) & ( n -1)^{2} & \frac{1}{2}( n -1)(3 n +4)\end{array}\right|$ हैं, तो $\sum_{ r =1}^{ n -1} \Delta_{ r }$ का मान
माना $S, k$ के ऐसे सभी वास्तविक मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरणों के निकाय का एक अद्वितीय हल है। $x+y+z=2$ $2 x+y-z=3$ $3 x+2 y+k z=4$ तो, $S$ है
सारणिक $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ निम्न में से किसके बराबर नहीं है
माना $m$ तथा $M \left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\right|$ के, क्रमशः न्यूनतम तथा अधिकतम मान हैं, तो क्रमित युग्म $( m , M )$ बराबर है
यदि ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, तो .${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $