Evaluate:
$\cos 48^{\circ}-\sin 42^{\circ}$
$0$
$1$
$-1$
$0.5$
$\cos 48^{\circ}-\sin 42^{\circ}=\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ}$
$=\sin 42^{\circ}-\sin 42^{\circ}$
$=0$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
Confusing about what to choose? Our team will schedule a demo shortly.