State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
$\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\frac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of$0^{\circ}<\theta<90^{\circ}$
Hence, the given statement is false.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
If $\cot \theta=\frac{7}{8},$ evaluate:
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$(ii)$ $\cot ^{2} \theta$
If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)