State whether the following are true or false. Justify your answer.

The value of $\cos \theta$ increases as $\theta$ increases

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cos 0^{\circ}=1$

$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$

$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$

$\cos 60^{\circ}=\frac{1}{2}=0.5$

$\cos 90^{\circ}=0$

It can be observed that the value of $\cos \theta$ does not increase in the interval of$0^{\circ}<\theta<90^{\circ}$

Hence, the given statement is false.

Similar Questions

In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.

In $Fig.$ find $\tan P-\cot R .$

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

$\sin 2 A=2 \sin A$ is true when $A=$

If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$