If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that,

$\tan A =\cot B$

$\tan A=\tan \left(90^{\circ}-B\right)$

$A=90^{\circ}-B$

$A+B=90^{\circ}$

Similar Questions

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$