If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that,

$\tan A =\cot B$

$\tan A=\tan \left(90^{\circ}-B\right)$

$A=90^{\circ}-B$

$A+B=90^{\circ}$

Similar Questions

In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.

In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

Prove that

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta},$ using the identity

$\sec ^{2} \theta=1+\tan ^{2} \theta$

In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.