Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

$L.H.S. =\frac{1+\sec A }{\sec A }=\frac{1+\frac{1}{\cos A }}{\frac{1}{\cos A }}$

$=\frac{\frac{\cos A+1}{\cos A}{1}}{\frac{1}{\cos A}}=(\cos A+1)$

$=\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}$

$=\frac{1-\cos ^{2} A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos A}$

$= R.H.S.$

Similar Questions

In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

State whether the following are true or false. Justify your answer.

$\cot$ $A$ is not defined for $A =0^{\circ}$

Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.